Today I'm going to present you some spatial filtering methods. This methods are known as Mask processing methods as well. These filters are used for different purposes.like
- Image Enhancements
- Edge Detection
I advise you to find the some applications of these filtering methods.
Smoothing Filters
Averaging Filter
|
Original Image Transformed Image |
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Average filters
H=fspecial('average',[3 3]);
avg=imfilter(gray1,H);
figure,imshow(avg);
Gaussian Filter
|
Original Image Transformed Image |
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Gaussian filters
H=fspecial('gaussian');
gaus=imfilter(gray1,H);
figure,imshow(gaus);
Median Filter
|
Original Image Noise Added Image Median Filtered Image
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Median filters
%adding noise to show the enhancement of median filter where noisy images
J = imnoise(gray1,'salt & pepper',0.02);
%SSfigure,imshow(J);
M3=medfilt2(J);
figure, imshow(J),figure, imshow(M3);
Sharpening Filters
|
High Pass Filter
|
Original Image High pass filtered Image |
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Shapenning filters
%high pass filter
%A=1
H1=[-1 -1 -1; -1 8 -1; -1 -1 -1]
img1=imfilter(gray1,H1);
figure,imshow(img1);
High Boosted Image
|
Original Image Transformed Image |
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%high boosted filter
%A=2
H2=[-1 -1 -1; -1 17 -1; -1 -1 -1]
img2=imfilter(gray1,H2);
figure,imshow(img2);
Roberts Filter
|
Original Image x-
transformed image y-
transformed image
|
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Roberts
H3=[1 0; 0 -1]
img3=imfilter(gray1,H3);
figure,imshow(img3);
H4=[0 1;-1 0]
img4=imfilter(gray1,H4);
figure,imshow(img4);
Prewitt Filter
|
Original Image x-
transformed image y-
transformed image
|
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Prewitt
H5=[-1 -1 -1;0 0 0;1 1 1];
img5=imfilter(gray1,H5);
figure,imshow(img5);
H6=[-1 0 1;-1 0 1;-1 0 1];
img6=imfilter(gray1,H6);
figure,imshow(img6);
Sobel Filter
|
Original Image x- transformed image y- transformed image |
Matlab Code
clear all
%Load images
[im1 map1]=imread('myimagecmp.jpg');
imshow(im1)
gray1=rgb2gray(im1);
figure, imshow(gray1);
%Sobel
H7=[-1 -2 -1;0 0 0;1 2 1];
img7=imfilter(gray1,H7);
figure,imshow(img7);
H8=[-1 0 1;-2 0 2;-1 0 1];
img8=imfilter(gray1,H8);
figure,imshow(img8);
No comments:
Post a Comment